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Overview
The Small Computer Monitor is a classic machine code monitor enabling debugging
of programs and general tinkering with hardware and software. It can also act as a
boot ROM, so no other software is required on the target computer system.

This tutorial is designed for people with little, or no experience of machine code
monitors and Z80 programming. If you have already had experience of these things
the Small Computer Monitor User Guide should be all the documentation you need.

This tutorial assumes you are using an RC2014-Z80 system and that the system is up
and running with the supplied BASIC ROM. You should therefore have the RC2014
connected to a terminal or a PC (or similar) running terminal emulation software.

The first thing to do is fit a ROM containing the Small Computer Monitor program,
and configure the hardware to boot up from this ROM.

After that you can enter and run machine code programs, test and debug programs,
and generally experiment with the hardware.

This tutorial concentrates on the use of the Small Computer Monitor, rather aiming
to be a definitive guide to Z80 programming. However, to use the monitor requires
some understanding of Z80 programming. Therefore simple programming is
explained in this document. This should be enough to get you started.

Once the Small Computer Monitor and the basics of Z80 programming are
understood there are plenty of suitable resources available on the internet which
can help with further progress.
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Prerequisites
Before diving in to using the monitor program there are a few things you need to be
familiar with. These are:
 Binary numbers
 Hexadecimal numbers
 ASCII characters

The next few pages give a brief introduction to these topics, but if you are in any
doubt please seek further information before continuing.

Decimal numbers
The decimal numbers we use in day to day life are expressed in base ten (or denary).
This means we use ten distinct symbols (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9).

To express numbers greater than 9 we use more than one of these digits. Using two
digits allows us to represent 100 different numbers (0, 1, 2, … , 97, 98, 99).

The least significant digit is on the right, with the digit to its left representing ten
times (base ten remember) the value of the digit to its right. And so on.

Thus decimal number 12 means (1 x 10) + (2 x 1), and the decimal number 123
means (1 x 1000) + (2 x 10) + (3 x 1).

Binary numbers
Binary numbers follow the same pattern as decimal numbers but are in base two.
This means we use two distinct symbols (0 and 1).

To express numbers greater than decimal 1 we use more than one of these digits.
Using two digits allows us to represent 4 different numbers (0, 1, 2 and 3)

The least significant digit is on the right, with the digit to its left representing two
times (base two remember) the value of the digit to its right. And so on.

Thus binary number 10 means decimal (1 x 2) + (0 x 1) = 2, and the binary number
101 means decimal (1 x 4) + (0 x 2) + (1 x 1) = 5.
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Hexadecimal numbers
Hexadecimal numbers (or Hex for short) follow the same pattern as decimal
numbers but are in base sixteen. This means we use sixteen distinct symbols (0, 1, 2,
3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F).

The letters A to F represent decimal numbers 10 to 15 respectively. So A=10, B=11,
C=12, D=13, E=14 and F=15.

To express numbers greater than decimal 15 we use more than one of these digits.
Using two digits allows us to represent 256 different numbers (0, 1, 2, … , 253, 254,
255).

The least significant digit is on the right, with the digit to its left representing sixteen
times (base sixteen remember) the value of the digit to its right. And so on.

Thus hexadecimal number 1F means decimal (1 x 16) + (15 x 1) = 31, and the decimal
number 1F2 means (1 x 256) + (15 x 16) + (2 x 1) = 498.

Why not just use decimal numbers?
The reason all this matters is that our normal base ten decimal numbering system
does not fit well with digital computers.

Computers are made up of electronics which is digital. Being digital means that each
of the smallest components that make up the computer can only be in one of two
states, on or off (or one or zero).

Binary notation is thus the most basic way to describe the state of any part, or group
of parts, in a computer.

Eight bit microprocessors, such as the Z80, process eight bits at once. To describe
any combination of these eight bits requires eight binary digits. This gives the range
of binary numbers from 00000000 to 11111111 (or decimal 0 to 255).

Now us mere humans have a bit of trouble working with numbers like 11010111, so
we need a more convenient notation. This is where hexadecimal comes in.

A hexadecimal digit has sixteen possible values, which happens to be the same as
four binary bits. Thus the following are equivalent:
 Binary 0000 = Hexadecimal 0
 Binary 0001 = Hexadecimal 1
 Binary 0010 = Hexadecimal 2
 Binary 0011 = Hexadecimal 3
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 Binary 0100 = Hexadecimal 4
 Binary 0101 = Hexadecimal 5
 Binary 0110 = Hexadecimal 6
 Binary 0111 = Hexadecimal 7
 Binary 1000 = Hexadecimal 8
 Binary 1001 = Hexadecimal 9
 Binary 1010 = Hexadecimal A
 Binary 1011 = Hexadecimal B
 Binary 1100 = Hexadecimal C
 Binary 1101 = Hexadecimal D
 Binary 1110 = Hexadecimal E
 Binary 1111 = Hexadecimal F

By using two hexadecimal digits we can describe all 8 binary digits. This allows us to
express the above example (binary 11010111) as hexadecimal D7. It is much easier
for us to handle “D7” then “11010111”, and thus when programming at the ‘binary’
level we tend to use hexadecimal notation.

So why not decimal?
Because a single hexadecimal digit can exactly represent four binary digits, and two
hexadecimal digits can exactly represent eight binary digits, there is a simple
relationship between the binary and hexadecimal. This makes hexadecimal numbers
a natural choice when working at the lowest level where we are concerned about
what individual digital bits are doing. The same relationship does not apply to
decimal notation, where a four binary digits requires either one or two decimal
digits depending on the value of the binary digits. This just tends to be messy and
inconvenient.

Bits, Bytes, Nibbles and Words
With all these different quantities being used regularly, they had to have names. A
Bit is a single digital quantity, which can be described in binary by one digit (0 or 1).
A Nibble is a group of four binary digits, which can be represented by one
hexadecimal digit (0 to F). A byte is a group of eight binary digits, which can be
represented by two hexadecimal digits. A word is a group of sixteen binary digits,
which can be represented by four hexadecimal digits.

The Z80 processor handles 8 data bits at once, which is a byte, and uses a 16 bit
memory address, which is a word.

Avoiding confusion
You may have noticed above that most times a number was mentioned it was
necessary to prefix is with the word decimal, binary or hexadecimal. Without doing
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that how do you know if the number “10” is decimal 10, binary 10 (decimal 2) or
hexadecimal 10 (decimal 16). In short, you don’t. You can often guess based on
context but you can’t be sure.

To avoid this confusion and to avoid continually having to write “decimal”, “binary”
or “hexadecimal” before every number, various notation systems have been used in
the computer industry. Unfortunately not everyone uses the same system!

The various systems use either a prefix or postfix for identification of the number
base. For example, putting “$” before a number (eg. $10) indicates the number is
expressed in hexadecimal.

Some commonly used identifiers are:

Identifier Base Example

$ Hexadecimal $1FC

0x Hexadecimal 0x1FC

H Hexadecimal 1FCH

0b Binary 0b101

% Binary %101

B Binary 101B

+ Decimal +123

D Decimal 123D

As the Small Computer Monitor is mainly used to directly manipulate memory,
registers and ports, which are digital in nature, the default for all numbers is
hexadecimal. Thus hexadecimal numbers don’t usually require special identifiers,
but there are some exceptions.

The disassembler shows constants as hexadecimal numbers prefixed by a “$”. The
prefix is necessary here for clarity because the processor’s registers B, C, D and E are
also valid hexadecimal numbers.

The assembler accepts hexadecimal numbers without any identifiers. To specify a
decimal number it must be prefixed with “+”. Hexadecimal numbers prefixed with
“$” or “0x” are also accepted.

Within this guide the ‘$’ prefix is normally used where clarity is required.
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ASCII characters
Within digital computers all the characters of the alphabet and all other symbols are
stored as numbers. The character allocation standard used by the Small Computer
Monitor is the American Standard Code for Information Interchange (ASCII).

The tables below show the subset of ASCII used by the Small Computer Monitor.

ASCII Hex. Char. ASCII Hex. Char. ASCII Hex. Char. ASCII Hex. Char.
0 00 NUL 16 10 32 20 (spc) 48 30 0
1 01 17 11 33 21 ! 49 31 1
2 02 18 12 34 22 “ 50 32 2
3 03 19 13 35 23 # 51 33 3
4 04 20 14 36 24 $ 52 34 4
5 05 21 15 37 25 % 53 35 5
6 06 22 16 38 26 & 54 36 6
7 07 23 17 39 27 ‘ 55 37 7
8 08 BS 24 18 40 28 ( 56 38 8
9 09 25 19 41 29 ) 57 39 9

10 0A LF 26 1A 42 2A * 58 3A :
11 0B 27 1B ESC 43 2B ES+C 59 3B ;
12 0C 28 1C 44 2C , 60 3C <
13 0D CR 29 1D 45 2D - 61 3D =
14 0E 30 1E 46 2E . 62 3E >
15 0F 31 1F 47 2F / 63 3F ?

ASCII Hex. Char. ASCII Hex. Char. ASCII Hex. Char. ASCII Hex. Char.
64 40 @ 80 50 P 96 60 ` 112 70 p
65 41 A 81 51 Q 97 61 a 113 71 q
66 42 B 82 52 R 98 62 b 114 72 r
67 43 C 83 53 S 99 63 c 115 73 s
68 44 D 84 54 T 100 64 d 116 74 t
69 45 E 85 55 U 101 65 e 117 75 u
70 46 F 86 56 V 102 66 f 118 76 v
71 47 G 87 57 W 103 67 g 119 77 w
72 48 H 88 58 X 104 68 h 120 78 x
73 49 I 89 59 Y 105 69 i 121 79 y
74 4A J 90 5A Z 106 6A j 122 7A z
75 4B K 91 5B [ 107 6B k 123 7B {
76 4C L 92 5C \ 108 6C l 124 7C |
77 4D M 93 5D ] 109 6D m 125 7D }
78 4E N 94 5E ^ 110 6E n 126 7E ~
79 4F O 95 5F _ 111 6F o 127 7F

So to refer to the letter ‘A’ when working in the monitor, it is usually necessary to
use the decimal value 65 or hexadecimal value 41.
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Getting Connected
If you already have your RC2014-Z80 system up and running with the supplied BASIC
ROM then you can skip this section.

The RC2014 needs to be connected to a terminal or computer running terminal
emulation software. The terminal provides the keyboard input and the displayed
output.

The physical connection is a serial cable from the RC2014 to the terminal.

Serial modules
The RC2014 serial port can either be the official Serial I/O module, the official Dual
serial module (SIO/2), the RC2014 Mini’s serial port or unofficial SIO/2 modules
following Grant Searle’s register addressing (eg. Dr Scott M Baker’s SIO/2 module) .
There are other modules available which might also work.

The Serial I/O module and the RC2014 Mini use a MC68B50 or compatible
Asynchronous Communications Interface Adapter (ACIA) chip. The Serial I/O module
has the option of either a 5 volt FTDI style serial interface or a 9-pin D-type RS232
serial interface, while the Mini only has the 5 volt FTDI style interface.

The Dual serial module uses a Zilog Z80 SIO/2 chip and provides two serial ports. The
Small Computer Monitor only requires port A. This module only provides the 5 volt
FTDI style serial interface, not the traditional RS232 serial interface.

Serial cables
To use the RS232 style interface you need a null modem lead to connect the 9-pin
D-type connector on the RC2014 board to that on the terminal (or computer).

To use the 5 volt FTDI style interface you need an FTDI (or compatible) USB to serial
cable. There are a variety of designs available. Note, there have been problems
experienced by some RC2014 users with some cables with some values of resistors
on the RC2014 boards.

See the section “Parts and Suppliers” for details of known compatible ‘cables’.
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Terminal programs
Unless you happen to be using a genuine computer terminal you will need to install
a terminal emulation program on a PC or similar.

Several freely available terminal emulation programs are detailed below, but in
general these are the required settings:

The port number will be determined by the hardware on your computer. Serial ports
are normally called “COM#”, where “#” is a number like 3 (eg. COM3). When you
plug in a suitable USB to Serial cable a COM port will become available on the
computer. If your computer has a legacy RS232 port it will also have a COM port
number.

Serial port settings for the RC2014 when running the Small Computer Monitor are
normally:
 Baud rate = 115200
 Date bits = 8
 Parity = None
 Stop bits = 1
 Flow control = None
 New line character(s) = Carriage Return
 Local echo = Off
 Backspace key sends = Control+H
 Terminal type = VT100 (not critical as only a basic terminal is required)
 Transmission delay(s) = 0

Terminal software usually has options to add delays to characters sent from the
terminal. These can usually be set to zero, but if you experience any loss of
characters you can add a small delay.

Tera Term
Unless you already have a preference, I’d suggest using Tera Term.

For Tera Term v4.96, use the Setup menu, Terminal item and Serial ports item to
configure as described above. Leave Answerback blank and Auto switch off.

Putty
Putty is a very capable program but has lots of complex options.
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For Putty v0.70, use the Configuration dialog box that opens when the program
loads.

On the Session page select the Connection Type = Serial.

Select the Category = Serial. Enter the Serial line to connect to = COM# (where # is
the number of your serial port), speed = 115200, data bits = 8, stop bits = 1, parity =
none, flow control = none.

Use the Terminal page to ensure “Impicit CR in every LF” is cleared, along with
“Implicit LF with every CR”. Also local echo and local line editing are Off.

Use the Keyboard page to set Backspace to Control+H.

Return to the Session page, Select Default Settings and click Save. Then click Open.

Once the terminal window opens you can return to the configuration options by
clicking on the terminal icon at the top left of the window and selecting Change
Settings.

HyperTerminal
For users of older Windows installations, such as XP, you probably already have
HyperTerminal installed. For HyperTerminal v5.1, use the File menu, Properties item
to configure the settings as detailed above.
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Installing the Small Computer Monitor
It is possible to run the Small Computer Monitor by downloading it into RAM, but
here it is assumed you are running it from a Read Only Memory (ROM) chip.

If you need to program your own chip you will find the program supplied as an Intel
Hex File suitable for opening with most chip programming products.

The programming method is dependent on the programmer you are using and is
beyond the scope of this tutorial. See the section “Parts and Suppliers” for details of
known compatible programmers.

The Small Computer Monitor can be either in a ROM chip with 8k bytes by 8 bits of
memory (often described as 64k bit memory) or in part of a larger chip. Which every
chip is used the Monitor program must be located in the Z80’s memory map starting
at address $0000.

A suitable chip is the AT28C64B-15PU. This is a very convenient chip if you want to
reprogram it again later as it is an Electrically Erasable Programmable Read Only
Memory (EEPROM). It can be erased and reprogrammed in just a few seconds with a
modern low cost programmer like the MiniPro TL866.

The exact fitting instructions depend on the circuit board it is plugged in to. The
most common RC2014 boards are detailed below.

RC2014 original 8k ROM board
This ROM board only accepts 8k byte ROM chips and has no links to configure. So
plug in the programmed chip and off you go.

RC2014 switchable ROM board
This ROM board can accept a range of chip capacities and has links to select how the
ROM is addressed. If you are using an 8k byte chip such as the AT28C64B-15PU the
links should be set as follows:

Page selection: A13, A14 and A15 link = Vcc (5 volts)
For larger chips, like the 27C512, links A13 to A15 need to be set to match where in
the chip the monitor code resides.

RC2014 pageable ROM board
This is quite a flexible board and has a number of links which need to be set. If you
are using an 8k byte chip such as the AT28C64B-15PU the links should be set as
follows:
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Page size: 8k (links as indicated by the PCB legend)
Page selection: A10, A11 and A12 = no link, A13, A14 and A15 link = 1

For larger chips, like the 27C512:
Page size: 8k (links as indicated by the PCB legend)
Page selection: A10, A11 and A12 = no link, A13, A14 and A15 need to be set to

match where in the chip the monitor code resides.

RC2014 Mini board
This ROM board can accept a range of chip capacities and has links to select how the
ROM is addressed. If you are using an 8k byte chip such as the AT28C64B-15PU the
links should be set as follows:

Page selection: A13, A14 and A15 link = Vcc (5 volts)
For larger chips, like the 27C512:

Page selection: A13, A14 and A15 link = need to be set to match where in the
chip the monitor code resides.
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Switch on
If all is well, when you switch on your RC2014 system, you should be greeted with
something like this on your terminal screen:

Small Computer Monitor
*

If you do not get a sign on message similar to the above, then consult the “Fault
Finding” section which can be found towards the end of this document.

The “*” character displayed on the terminal is the Monitor Prompt. This indicates
the monitor is ready to accept a new command. Try typing the question mark
character and then pressing the return key.

In the following text, user input is in a Bold Italic font, while the results are shown in
a Regular font. Special key presses, such as Escape, are shown enclosed in curly
brackets. Thus the example below means the user types “b 5000” on the terminal’s
keyboard followed by a press of the Return key, and the monitor displays
“Breakpoint set” on the terminal’s screen.

b 5000 {return}
Breakpoint set

Unless otherwise stated, parameters are hexadecimal numbers, such as FF12. There
is no need to prefix them with a hexadecimal identifier or a numeric character. The
exception to this rule is operands in the assembler.

Named parameters are shown, in this document, enclosed by “<” and “>”, and
further enclosed by “[“ and “]” if the parameter is optional.

Command names and any parameters are delimited by a space character.

Monitor commands are not case sensitive, so can be typed in either upper or lower
case, or any combination of upper and lower case.
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First Commands
Below are some of the simple monitor commands to try.

? or Help
Syntax: HELP
Or syntax: ?

This displays a list of the monitor commands together with their syntax.

For example:

help {return}
Small Computer Monitor by Stephen C Cousins (www.scc.me.uk)
Version 0.4.0 configuration A for Z80 based RC2014 systems

Monitor commands:
A [<address>] = Assemble instructions
B [<address>] = Breakpoint set or clear
D [<address>] = Disassemble instructions
E [<address>] = Edit memory
F [<name>] = Flags display or modify
G [<address>] = Go to program
I <port> = Input from port
M [<address>] = Memory display
O <port> <data> = Output to port
R [<name>] = Registers display or edit
S [<address>] = Step one instruction
Also: DEVICES, HELP, RESET
API <function> [<A>] [<DE>]
CONSOLE <device number>
FILL <start> <end> <byte>

Reset
Syntax: Reset

This command performs a software reset, similar to pressing the reset button.

It can not perform a physical hardware reset on the electronics, but it does run the
same software as a hardware reset.

Memory display
Syntax: M [<memory address>]

http://www.scc.me.uk)
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A block of memory is displayed, with each line showing the memory address in
hexadecimal, the contents of sixteen memory locations in hexadecimal, and the
contents of those sixteen memory locations in ASCII. Non-printable ASCII characters
are shown as dots.

The memory address parameter is optional. If supplied the memory will be displayed
starting at the specified address. If not, the memory display starts from the last
address referenced.

For example:

m 1600 {return}
1600: 7C FF CB CE 21 15 16 CD 93 15 20 08 21 7C FF CB |...!..... .!|..
1610: C6 21 1B 16 C9 DD 15 E6 15 F1 15 A9 15 B2 15 BD .!..............
1620: 15 11 27 16 C3 34 02 5A 38 30 20 62 61 73 65 64 ..'..4.Z80 based
1630: 20 52 43 32 30 31 34 20 73 79 73 74 65 6D 73 05 RC2014 systems.
1640: 00 21 7C FF 11 55 16 CB 46 C4 34 02 11 62 16 CB .!|..U..F.4..b..
1650: 4E C4 34 02 C9 53 65 72 69 61 6C 20 41 43 49 41 N.4..Serial ACIA
1660: 05 00 53 65 72 69 61 6C 20 53 49 4F 2F 32 05 00 ..Serial SIO/2..
1670: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF .............…

Pressing {return} again will display the next block of memory.

Pressing {escape} will exit the memory display mode and return to the monitor
prompt.

Alternatively a new command can be entered without first returning to the monitor
prompt.

Registers display or edit
Syntax: R [<name of register>]

This command can either display the current processor registers or edit the value of
a processor register.

When no parameter is entered the current register values are displayed.

For example:

r {return}
PC:0001 AF:0002 BC:0003 DE:0004 HL:0005 IX:0006 IY:0007 Flags:------N-
SP:0011 AF'0012 BC'0013 DE'0014 HL'0015 (S)0016 IR:0017 Flags'---H--N-

More on registers later.
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Input from port
Syntax: I <port address>

The specified input port address is read and the result displayed in hexadecimal.

For example:
I F0 {return}
00

If you have the RC2014 digital I/O module you can typically read the switch inputs
with the command:

I 0 {return}

Press one of the buttons on the I/O module and keep it held whilst pressing the
Return key at the end of the input command. If you you are holding button ‘1’ then
you should see this:

I 0 {return}
01

Output to port
Syntax: O <port address> <data byte>

The specified data byte is written to the specified output port address.

For example:
O F0 55 {return}

If you have the RC2014 digital I/O module you can typically write to the LED outputs
with the command:

O 0 <output byte> {return}

For example, this command will turn on the LEDs labelled 0 and 2.

O 0 5 {return}

The value 5 is written to the LED output latch. In binary the number 5 is 00000101,
thus bits 0 and 2 are ON. This results in LED 0 and LED 2 lighting up.
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Writing Programs
Programs are made up of instructions. At the lowest level, the Z80 microprocessor
only understands instructions, or machine code, which are a series of binary bits.
These bits are divided into bytes, with a single instruction being between one and
four bytes long. Each byte can be described as a decimal number from 0 to 255, or a
hexadecimal number from 00 to FF. So a program is just a list of numbers. Not too
friendly really.

So what numbers make up a program?

To answer this question you first need to decide what the program is going to do.
This should be something you could write down and read out to anyone so that they
can understand what it does.

The next step is to break down the task into simple steps, such as a numbered list of
things to do or a flow chart. Again this should be in everyday language you can easily
get anyone else to understand.

Each step of the task can then be converted into instructions the computer
understands.

High Level Language
You can use high level computer programming languages, where the instructions are
quite like normal written languages. This makes it relatively easy to convert your
design into instructions the computer understands.

On classic 8-bit computers, high level language usually meant Beginner's All-purpose
Symbolic Instruction Code (BASIC). Given the limitations of those early computers
BASIC was a good solution. Many people knock classic BASIC but with only a few
thousand bytes of memory and perhaps only cassette recorder for storage, it was
not easy to provide a more desirable programming language.
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Machine Code
This document is a tutorial for the Small Computer Monitor, so we are talking about
Machine Code, not high level programming languages. Machine Code is fast and
efficient, but not as easy to write as high level language code.

You can use the Small Computer Monitor to write binary Machine Code instructions
directly to the computer’s memory. This is proper hard-core Machine Code. But
there are slightly easier ways to do it.

To avoid working directly in binary we have already established that hexadecimal
numbers are easier for people to use, but it is still only for crazy people. Instead the
instructions are usual written in Assembly Language.

Assembly Language
Assembly Language is a way of writing Machine Code instructions using a series of
Mnemonics and Operands which are much easier to read, write and remember than
hexadecimal numbers. These Mnemonics and Operands are converted to Machine
Code by an assembler.

The Small Computer Monitor can convert Assembly Language instructions into
Machine Code, but only one instruction as a time. To write large programs it is
desirable to use a program called an Assembler to compile the Machine Code.
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Your First Program
It is a tradition in the programming world to make your first program one that prints
“Hello World!”, but here we start with something simpler.

Lets just start by trying to write the character “!” to the terminal screen.

As explained in the previous section, the first thing to do is define the task. Well we
did that in the line above.

Next you should break down the task onto easy steps. In a larger program you’d be
lucky to even see a step mentioned which is as small as this whole task, but as this is
a tutorial I’ll go full Rambo on the design and break it right down.

These are the steps required to write a letter to the terminal screen:
1. Store the character’s ASCII value in a variable (a processor register)
2. Call the system function which writes a character to the terminal
3. Finish the program

Step 1
The ASCII value for the character “!” is decimal 33 or hexadecimal 21. The processor
has a number of special variables called registers. To prepare a character for display
the character’s ASCII value must be stored in the A register. The assembly language
instruction to do this is:

LD A, 21

This instruction can be read as “Load the A register with the value hexadecimal 21”.
Note that the assembler defaults to the operand (21) being in hexadecimal.

Step 2
The Small Computer Monitor provides a set of functions to help programs perform
common tasks. This is called an Application Programming Interface (API). To use the
API to display a character you need to store the value 2 in register C and then call
the API. The assembly language instructions to do this are:

LD C, 2
CALL 30

The API subroutine starts at address hexadecimal 30. The API function number to
output a character to the terminal is 2.

Step 3
To finish a program you use the Return instruction:

RET

The whole program written in assembly language is:
LD A, 21
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LD C,2
CALL 30
RET

The assembler converts these assembly language instructions into binary machine
code instructions. Expressed in hexadecimal this is:

3E 21 0E 02 CD 30 00 C9

The conversion process is called assembling. When assembled into memory starting
at address hexadecimal 8000, the assembler output listing will usually look
something like this:

8000: 3E 21 LD A, 21
8002: 0E 02 LD C, 2
8004: CD 30 00 CALL 30
8007: C9 RET

Using the assembler
To enter this program into memory using the Small Computer Monitor you use the
Assemble command (A). To assemble the machine code to address hexadecimal
8000 you type the command:

A 8000 {return}

The monitor then shows the current instruction at address 8000, which looks
something like this:

8000: 00 . NOP >

In this case the instruction currently in memory at address 8000 is NOP, but it could
be anything at this point. You can then type the instruction you want to assemble
there:

8000: 00 . NOP > LD A,21 {return}

The monitor program then displays the instruction you entered in the same list
format, followed by the next instruction currently found in memory:

8000: 3E 21 >! LD A,$21
8002: 00 . NOP >

You can then enter the next instruction: LD C,2

Continue like this until the whole program has been entered.

To exit the assembler press the Escape key.
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You can check the whole program is correct by listing the program with the
Disassemble command (D):

D 8000 {return}

The following should then be displayed:

8000: 3E 21 >! LD A,$21
8002: 0E 02 .. LD C,$02
8004: CD 30 00 .0. CALL $0030
8007: C9 . RET

Press the Escape key to end the program listing, or the Return key to see the next
few instructions.

The characters after the machine code bytes are the ASCII characters for each of
those bytes. Thus the first instruction 3E 21, shows “>!”.

Now we have the machine code program in memory we can run it. For this we use
the Go command (G):

G 8000 {return}
!*

The output, illustrated above, is the “!” character the program displays followed by
the monitor prompt character “*”.

Debugging
Hopefully the simple program above just worked without any drama. But what if it
didn’t?

Sometimes you can just look at a program for ages and not see why it failed. In such
cases you need to use the debugging tools built in to the Small Computer Monitor.

There are two tools available to you:
 Breakpoint
 Single step

A breakpoint enables the program to be stopped at a specified address and the state
of the processor displayed. Using the above program as an example, try this:

B 8004 {return}
Breakpoint set
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G 8000 {return}

You should now see something like this:

Breakpoint
PC:8004 AF:21B7 BC:6902 DE:BDBA HL:BCDE IX:5B5A IY:AEAB Flags:S--H-PNC

The above indicates that the program has stopped at the breakpoint and shows the
processor’s registers and flags at that instant.

Note, some of the values will probably be different to those illustrated above.
However, the ones used by the example program should be as specified below.

In this case the significant registers are these:
PC This is the program counter. This tells you where in the program

you are. It is actually the address of the next instruction to be
executed. In this case it is 8004.

AF AF is a register pair, in this case containing 21B7. The first two
digits of this value are the A register, while the second two are
the F register. So A is 21.

BC BC is a register pair, so C is 02.

Register pairs will be explained more fully later.

This is our program and where it has stopped.

8000: 3E 21 >! LD A,$21

8002: 0E 02 .. LD C,$02
________________________________________ We stopped here!

8004: CD 30 00 .0. CALL $0030

8007: C9 . RET

Just prior to stopping at the breakpoint the program executed the instructions LD
A,$21 and LD C,$02. Thus A contains $21 (the ASCII value of “!”) and C contains $02
(the API call number).

If you wish to continue the program from that point just enter:
G {return}

The program should then complete as before and a “!” character is displayed.

The Go command without an address specified causes the program to run starting at
the address shown in PC of the register display. In this case 8004.
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Alternatively, you can alter the register’s values before you continue the program
with the Go command.

Repeat the above process:

B 8004 {return}
Breakpoint set

G 8000 {return}

Breakpoint
PC:8004 AF:21B7 BC:6902 DE:BDBA HL:BCDE IX:5B5A IY:AEAB Flags:S--H-PNC

To change the character to be printed we need to edit the A register. To do this we
enter:

R A {return}
A: 21 _

The R command followed by the register name result in the contents of the specified
register being displayed. In this case the value 21. The input cursor should be at the
right of the current value inviting you to enter a new value. Try entering the value 41,
which is the ASCII value of the letter “A”.

To confirm the register’s value has been changed, enter:

R {return}
PC:8004 AF:41B7 BC:6902 DE:BDBA HL:BCDE IX:5B5A IY:AEAB Flags:S--H-PNC
SP:FE4E AF'B0E6 BC'2176 DE'F789 HL'B354 (S)00B1 IR:801E Flags'SZ---PN-

This shows the A register is now 41. The R command shows more registers than are
shown at the breakpoint, but these can be ignored for now.

To continue the program with the new value in the A register, enter:
G {return}

The program should then complete as before, but will display the character “A”
instead of the character “!”.

If the program were longer it might be worth setting the breakpoint further along in
the program before continuing. The program will then continue from the first
breakpoint to the new breakpoint.

In more complex programs the ability to stop the program at a specified location
and view the processor’s registers and flags can be invaluable. Being able to change
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register values before continuing is a very useful way of interacting with the
program to set up test conditions and try ideas.

Single Step
The other debugging tool is Single Step.

The breakpoint allows the program to be stopped at a specified location, while the
single step feature allows the program to execute one instruction at a time. Single
stepping is just like setting the breakpoint after each instruction is executed.

To single step the above example, enter:

S 8000 {return}
PC:8000 AF:41B7 BC:6902 DE:BDBA HL:BCDE IX:5B5A IY:AEAB Flags:S--H-PNC

The state of the processor is displayed just before executing the instruction at the
specified address. Note, the monitor prompt “*” is not displayed.

To execute the instruction at the address shown, press the Return key. The following
should be displayed.

8000: 3E 21 >! LD A,$21
PC:8002 AF:21B7 BC:6902 DE:BDBA HL:BCDE IX:5B5A IY:AEAB Flags:S--H-PNC

As mentioned previously for breakpoints, some of the register values will probably
be different to those illustrated above.

The first line shows the instruction at the current address, the second line shows the
processor’s state after that instruction is executed. In this case the A register is now
21 and the program counter (PC) is now the address of the next instruction to be
executed (8002).

Pressing the Return key then executes the next instruction and so on.

Executing the whole program one step at a time should result in a display something
like this:

s 8000 {return}
PC:8000 AF:41B7 BC:6902 DE:BDBA HL:BCDE IX:5B5A IY:AEAB Flags:S--H-PNC
8000: 3E 21 >! LD A,$21
PC:8002 AF:21B7 BC:6902 DE:BDBA HL:BCDE IX:5B5A IY:AEAB Flags:S--H-PNC
8002: 0E 02 .. LD C,$02
PC:8004 AF:21B7 BC:6902 DE:BDBA HL:BCDE IX:5B5A IY:AEAB Flags:S--H-PNC
8004: CD 30 00 .0. CALL $0030
Stepping over code in ROM or in monitor
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!PC:8007 AF:2180 BC:1B02 DE:BDBA HL:021B IX:5B5A IY:AEAB Flags:S-------
8007: C9 . RET
Stepping over code in ROM or in monitor

Where the display shows “Stepping over code in ROM or in monitor” at address
8004, the single stepping has skipped all the instructions in the monitor that are
executed when outputting a character to the terminal.

When the program terminates with the RET instruction at address 8007, the
““Stepping over code in ROM or in monitor” message is displayed again as return
passes back to the monitor program. Single stepping then ends and the monitor
prompt is shown.

When stepping through a program you can press the Escape key to exit single
stepping, or just start typing a new command. You don’t have to Escape first.

You can combine breakpoint and single stepping, for example:

b 8004 {return}
Breakpoint set

g 8000 {return}
Breakpoint
PC:8004 AF:2180 BC:1B02 DE:BDBA HL:021B IX:5B5A IY:AEAB Flags:S-------

s {return}
PC:8004 AF:2180 BC:1B02 DE:BDBA HL:021B IX:5B5A IY:AEAB Flags:S-------
8004: CD 30 00 .0. CALL $0030
Stepping over code in ROM or in monitor
!PC:8007 AF:2180 BC:1B02 DE:BDBA HL:021B IX:5B5A IY:AEAB Flags:S-------
8007: C9 . RET
Stepping over code in ROM or in monitor

When debugging a large program stepping from the beginning can be very tedious,
so it is better to set a breakpoint at the start of the suspect code and the single step
from there.
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Hello World!
Now for the classic “Hello World!” Program.

We have already shown how to display a single character on the terminal.

8000: 3E 21 >! LD A,$21
8002: 0E 02 .. LD C,$02
8004: CD 30 00 .0. CALL $0030
8007: C9 . RET

To display “Hello World!” we could just repeat this:

LD A,$48 ;”H”
LD C,$02
CALL $0030

LD A,$65 ;”e”
LD C,$02
CALL $0030

LD A,$6C ;”l”
LD C,$02
CALL $0030

---

RET

This would get the job done but it is very inefficient. A better way would be to have
the characters of the message stored in memory and have a small program that
scans the message one character at a time displaying each as it goes.

To write characters to memory you can use the Edit command (E) as follows.

e 8100 {return}
8100: 74 t LD (HL),H > "Hello world!
810C: 3F ? CCF > 0
810D: D1 . POP DE >

Press the Escape key to exit editing memory.

The edit command shows the current contents of memory and invites you to enter
new contents. It accepts hexadecimal numbers, such as F3, or a string of ASCII
characters prefixed with a Quote character. Notice that you don’t put a Quote
character at the end of the characters you enter. When entering hexadecimal
numbers you can enter more than one, just put a space between them.
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In the example above the zero is entered as an end marker.

You can check the characters are correctly entered with the Memory command (M).

m 8100 {return}
8100: 48 65 6C 6C 6F 20 77 6F 72 6C 64 21 00 D1 94 E3 Hello world!....
8110: 9A 82 B7 15 BA 13 B8 01 96 53 42 57 2E D7 9C BD .........SBW....
8120: E4 FD D7 A9 D7 F2 8B 77 DD 89 9D 7F B7 9C 7E 24 .......w......~$
8130: 22 83 7B 12 12 92 64 AB 42 02 10 A8 80 B0 02 A6 ".{...d.B.......
8140: 61 6A D8 42 44 B8 45 26 D8 AF B6 BF E9 78 58 6B aj.BD.E&.....xXk
8150: 2A F7 85 D7 50 34 27 9B 6F 11 49 A3 85 DB 94 90 *...P4'.o.I.....
8160: DD 5D C6 4B 34 63 83 7B 99 EF ED 90 B1 E7 7D C2 .].K4c.{......}.
8170: 72 12 D3 DC 72 19 56 29 CA 86 7D 32 9C 8C 03 4E r...r.V)..}2...N

We now have the characters in memory, so we need a simple way to read each
character in turn and display it, stopping when the zero marker is reached. This is
how it will work:

Yes

No Finished

Start

= $00?

Get start of text

Get character

Display character

Move to next
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Converting the flow chart to assembler instructions gives us this:

8000: 21 00 81 !.. LD HL,$8100

8003: 7E ~ LD A,(HL)

8004: FE 00 .. CP $00
8006: C8 . RET Z

8007: 0E 02 .. LD C,$02
8009: E5 . PUSH HL
800A: CD 30 00 .0. CALL $0030
800D: E1 . POP HL

800E: 23 # INC HL

800F: C3 03 80 ... JP $8003

Considering each step of the program in turn, here is a detailed explanation.

LD HL, $8100
The string of characters we want to display is in memory at 8100. The instruction
“LD HL, $8100” sets the HL register pair to the value 8100, the location of the string
of characters. Thus HL points to the start of the string of characters.

LD A, (HL)
The contents of memory pointed to by HL is referenced with “(HL)”. Therefore “LD
A,(HL)” takes the contents of memory pointed to by HL and stores it in register A. So
A now contains a character from the string.

CP $00
This instruction compares the value in the A register with the value specified, in this
case $00. So the instruction asks the question: is A = 0? If the value in A is equal to
the specified value the processor’s Zero flag (Z) is set. In other words, the difference

Start

= $00?

Get start of text

Get character

Display character

Move to next
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between the two is Zero. If they are not equal the processor’s Zero flag is cleared.
This is referred to as Not Zero or NZ. This instruction checks to see if we have
reached the string terminator character which has the ASCII value $00.

RET Z
This is a variation on the Return (RET) instruction. Return means return from
subroutine. A program is written as a subroutine, so return from subroutine ends
the program. This version of the instruction is RET Z, which means Return if the Zero
flag is set. Thus if the previous instruction finds that the character is $00 and thus
sets the Zero flag, this instruction will end the subroutine and thus end the program.

LD C,$02
This stores the value 2 in the C register. This is in preparation for calling the
Application Programming Interface (API) with function number 2.

PUSH HL
Previously when we have called the API we were not worried what the register
values were when the API function finished, but here we are. We need to remember
the value of HL as we still need it to find the next character in the string. We
therefore have to remember the value of HL in case the API function changes it. The
instruction “PUSH HL” puts a copy of HL on the Stack. The stack is like a pile of paper.
If you put a new piece of paper, with a number written on it, on the stack, it will stay
there. When you need the number again you can get it off the stack. You can have
lots of pieces of paper on the stack but you can only put them on the top and take
them off the top, so you can’t change the order.

CALL $0030
This calls the API. The register value C contains the function number, in this case 2.
Function 2 outputs the ASCII character in A to the terminal display.

By way of further explanation, the CALL instruction works by PUSHing the current
value of the program counter on the stack and then loading the program counter
with the specified address. At the end of the subroutine, the RET instruction POPs a
value off the stack and writes it to the program counter register. This causes the
program to return to the instruction immediately following the CALL.

POP HL
To retrieve a value from the stack you use the instruction “POP”. This POPs a value
off the stack and stores it in the specified register pair. In this case we restore HL to
the address of the character in the character string. To use the pile of paper analogy
you take the top sheet of paper off the stack.

INC HL
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This increments the value of the specified register pair. Increment simply means to
add one. So HL = HL + 1. As HL points to a character in the character string, it now
points to the next character in the string.

JP $8003
This causes the program to jump to the specified address. It actually stores the
specified value in the register PC. The program therefore loops back to consider the
next character in the string.

And that’s it. The Hello World! Program done.

A better world
Well actually it is not quite all over as there are some improvements to make and
some lessons to learn.

The string display program above is so useful it is worth organising as a subroutine
you can use in future programs.

Here is the re-usable string display routine:

8200: 7E ~ LD A,(HL)
8202: FE 00 .. CP $00
8203: C8 . RET Z
8004: 0E 02 .. LD C,$02
8006: E5 . PUSH HL
8007: CD 30 00 .0. CALL $0030
800A: E1 . POP HL
800B: 23 # INC HL
800C: C3 00 82 !.. JP $8200

Now to display the string you write:

8000: 21 00 81 !.. LD HL,$8100
8003: CD 00 82 ... CALL $8200
8006: C9 . RET

But there are further improvements too.

You can replace “CP $00” with “OR A”. The instruction “OR A” will also set the Zero
flag if A is $00, but is smaller and faster.

The CALL $0030 instruction can also be replaced. The Z80 processor has a few
special CALL instructions which are smaller and faster. These are Restart instructions,
where RST 30 is equivalent to CALL 0030.
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This tutorial does not aim to be a complete guide to programming the Z80. There
are plenty of other materials on the internet to consult, so no further explanation of
the above improvements is being given here.

There is one improvement however which is specific to the Small Computer Monitor,
and thus needs a mention. The subroutine to display a string of characters is so
useful and so often used that the Monitor provides this function as one of its API
calls. So that re-usable subroutine above is not actually needed in your tool kit of
useful code. Instead to display the Hello World! String, just write this:

8000: 11 00 81 ... LD DE,$8100
8003: 0E 06 .. LD C,$06
8005: F7 . RST 30
8006: C9 . RET

Some would say it is good practice to turn this operating system specific code into a
subroutine:

8300: 0E 06 .. LD C,$06
8302: F7 . RST 30
8303: C9 . RET

And call it with:

8000: 11 00 81 ... LD DE,$8100
8003: CD 00 83 ... CALL $8300
8306: C9 . RET

This way the bulk of your code is independent of the operating system it is running
on. Again there are plenty of resources available concerning programming
techniques.
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Registers and Flags

We have already seen how to examine the processor’s register values.

R {return}
PC:8004 AF:41B7 BC:6902 DE:BDBA HL:BCDE IX:5B5A IY:AEAB Flags:S--H-PNC
SP:FE4E AF'B0E6 BC'2176 DE'F789 HL'B354 (S)00B1 IR:801E Flags'SZ---PN-

The first line of registers shows:
 Program Counter (PC)
 Register pairs (AF, BC, DE, HL)

 The A register is the processor’s accumulator
 The F register holds the processor’s status flags

 Index registers (IX, IY)
 Flags shown as named bits (S, Z, H, P, N, C)

The second line of registers shows:
 Stack Pointer (SP)
 Alternative register set (AF’, BC’, DE’, HL’)
 The contents of the stack pointer (S)
 Interrupt vector and refresh register pair (IR)
 Alternative register flags shown as named bits (S, Z, H, P, N, C)

There are plenty of resources on line to explain these registers and flags.

We have seen how to modified a single register value.

R A {return}
A: 41 _

We can modify the value of a register pair in the same way.

R HL {return}
A: BCDE _

The Flags register can also be modified using the same method.

r f {return}
F: 01 _

While this method of modifying the Flags register works, it is not very convenient.
Each flag is a single bit within the 8-bit register, so manipulating flag bits by entering
a hexadecimal byte requires quite a bit of thought. The Small Computer Monitor
therefore has a separate command to modify individual flag bits.
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Typing the Flag command (F) on its own displays the registers, including the flag bits.

f {return}
PC:7000 AF:6597 BC:1B02 DE:BDBA HL:1234 IX:5B5A IY:AEAB Flags:S--H-PNC

Typing the Flag command (F) followed by a flag name will set that flag bit and
display the updated value.

f z {return}
PC:7000 AF:65D7 BC:1B02 DE:BDBA HL:1234 IX:5B5A IY:AEAB Flags:SZ-H-PNC

To clear a flag, type the Flag command (F) followed by the NOT version of the flag
name:

f nz {return}
PC:7000 AF:6597 BC:1B02 DE:BDBA HL:1234 IX:5B5A IY:AEAB Flags:S--H-PNC

The Small Computer Monitor’s User Guide gives details of all the flag and condition
names that can be used with this command.
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More Example Programs
This section contains some example programs designed to should how various
features of the Small Computer Monitor can be used and also to show additional
Z80 programming techniques.

You may want to consult the Small Computer Monitor User Guide which contains
reference information related to some of these examples.

These examples are written as source code only and do not include the assembled
machine code hexadecimal bytes shown in previous examples.

It is good practice when writing source code to add comments to explain the code.
Comments start with a semi-colon and extend to the end of the current line.
Comments can be on their own line or at the end of an instruction line. When using
a full blown assembler these comments form part of the source code and help
document how it works.

When using the Small Computer Monitor’s in-line assembler you do not enter
comments.

Displaying a new line
Earlier examples showing how to display characters on a terminal screen have
avoided outputting an end of line, and thus starting any further display on a new
line.

This code shows how to output a character, then a new line, then another character.

; Example showing output on a new line
LD A,31 ;ASCII character “1”
LD C,2 ;API call 2 = Output character
RST 30 ;API call outputs “1”
LD C,7 ;API call 7 = Output new line
RST 30 ;API call outputs new line
LD A,32 ;ASCII character “2”
LD C,2 ;API call 2 = Output character
RST 30 ;API call outputs “2”
RET

The output should look like this.

1
2*
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You could output a new line by outputting a carriage return character ($0D) and
possibly a line feed character ($0A) as well. The word “possibly” is the issue. Some
devices use carriage for a new line, others use carriage return plus line feed, and yet
others use just line feed. By using the API call to output a new line, the exact
character(s) required do not have to be coded into your program. Thus when the
program is moved to a system with a different new line scheme it will still run
correctly.

It is not always convenient to call the API each time a new line is required. For
example, you may wish to have a string of characters (like the Hello World example)
which includes a new line. The Small Computer Monitor allows this by expanding the
character $05 to whatever new line sequence the monitor is configured for.

Input from keyboard
This example waits for the user to press a key on the terminal’s keyboard, then waits
one second before displaying the character on the terminal’s screen.

LD C,1 ;API call 1 = Input character
RST 30 ;API call inputs a character
PUSH AF ;Remember the key character
LD C,+10 ;API call 10 = Delay by DE milliseconds
LD DE,+1000 ;Delay in milliseconds
RST 30 ;API call delays for 1 seconds
POP AF ;Restore the key character
LD C,2 ;API call 2 = Output character
RST 30 ;API call outputs character
RET

Flashing an LED
If you have the RC2014 digital I/O module you can write a simple program to flash
an LED.

8000 Loop: LD A,1 ;LED bit zero ON value
OUT (0),A ;Turn LED on
LD C,+10 ;API call 10 = Delay by DE milliseconds
LD DE,+500 ;Delay in milliseconds
RST 30 ;API call delays for 0.5 seconds
LD A,0 ;LED bit zero OFF value
OUT (0),A ;Turn LED off
LD C,+10 ;API call 10 = Delay by DE milliseconds
LD DE,+500 ;Delay in milliseconds
RST 30 ;API call delays for 0.5 seconds
JP Loop ;Repeat forever

Suggested program location (8000) shown above.

The above example assumes the module is configured for output port address zero.
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When this program runs, the LED flashes, and flashes, and flashes. It does not end
until the processor resets. It is actually quite difficult to write a program that can do
something as apparently simple as flashing a light whilst also doing something else.

If you are using a fully featured assembler, “Loop” is a label that can be used to
reference Loop’s memory address. In this case the instruction “JP Loop” is
assembled as a jump to the memory location containing the instruction “LD A,1”.

When using the Small Computer Monitor’s in line assembler only one line is
considered at a time and labels on other lines are not supported. Therefore it is
necessary to enter the address of the jump, as earlier examples have shown. You will
soon be wanting a fully featured assembler!
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Better flashing!
The “Flashing an LED” example can be improved. Whenever you see blocks of code
being repeated it is worth looking to see if the code can be written to avoid the
duplication.

If we take the common block of code out and turn it into an “Led” subroutine we get
this:

8000 Loop: LD A,1 ;LED bit zero ON value
CALL Led ;Write to LEDs and delay
LD A,0 ;LED bit zero OFF value
CALL Led ;Write to LEDs and delay
JP Loop ;Repeat forever

8100 Led: OUT (0),A ;Turn LED(s) on/off
LD C,+10 ;API call 10 = Delay by DE milliseconds
LD DE,+500 ;Delay in milliseconds
RST 30 ;API call delays for 0.5 seconds
RET ;Return from this subroutine

Suggested program locations (8000 and 8100) are shown above.

Now the first Loop can be expanded to include more light changes, such as:

Loop: LD A,1 ;LED bit 0 ON value
CALL Led ;Write to LEDs and delay
LD A,2 ;LED bit 1 ON value
CALL Led ;Write to LEDs and delay
LD A,3 ;LED bit 2 ON value
CALL Led ;Write to LEDs and delay
LD A,4 ;LED bit 3 ON value
CALL Led ;Write to LEDs and delay
JP Loop ;Repeat forever

Now the loop above looks like it can be improved too. Introducing tables…

To further refine this code and to make it scale up better to a longer light show, we
will use a data table. Data tables are very powerful devices.

In the above example we repeat the sequence:
LD A,x
CALL Led

For each light change.

A better solution, especially for longer sequences, would be to have a list (or table)
of the LED output values and have a small routine which reads each item in the list
and outputs it to the LEDs. To change the light sequence you then only need to edit
the table.
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A table for the above example would be:
DB 1,2,3,4

In this case the assembler directive DB stands for Define Byte(s) and results in the
number values listed being written into memory as a series of bytes.

The following program has been entered into the on line assembler at
www.Asm80.com. See www.scc.me.uk for a brief Asm80.com tutorial.

.ORG $8000

; Load the B register with the length of the list (14 decimal)
; Load HL with the address of the start of the list (TABLE)
START: LD B,14

LD HL,TABLE

; Loop back to here for each LED output value
LOOP:

; Load the A register with the contents of memory addressed by HL
; This being one of the LED output values

LD A,(HL)

; Call the subroutine which outputs the value to the LED port
; and then waits for a while before returning
; As the LED subroutine might change the value of the registers
; B and HL, which we are using to count and point to the table, we
; must first store their values on the stack (PUSH instructions) and
; after we must restore their values from the stack (POP instructions)

PUSH BC
PUSH HL
CALL LED
POP HL
POP BC

; Increment HL to point to the next value in the table
INC HL

; Repeat until we get to the end of the table (when B gets to zero)
; DJNZ is a clever instruction which decrements the B register
; and if it is not then zero it jumps to the specified location

DJNZ LOOP

; In order to repeat the sequence indefinitely we go back to the
; start of the program

JR START

; Alternatively we could just return to the monitor
RET

; This subroutine first outputs the value in the A register to
; the LED port, then waits a while before returning
; Warning: API calls (RST $30) may change the value of some
; registers so it may be necessary to store their values before

http://www.Asm80.com.
http://www.scc.me.uk
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; the call and restore them after
LED: OUT ($00),A

LD C,10
LD DE,500
RST $30
RET

; This table is a list of LED output values
TABLE: DB 1,2,4,8,16,32,64,128

DB 64,32,16,8,4,2

Often tables have an end marker so that it is not necessary to know the length of the
table in advance. The table can simply be read until the end marker value is found.
In this case however no byte value can be reserved as an end marker because any
LED pattern might be required for the light show.

A table with a NULL ($00) as an end marker might look like this:
DB 64,32,16,8,4,2
DB 0 ; End marker

The on line assembler produces a HEX file to send to the Small Computer Monitor as
documented in the Asm80.com tutorial. It also produces a list file as shown below.
In this case the comments have been excluded.

8000 .ORG $8000
8000 06 0E START: LD B,14
8002 21 1C 80 LD HL,TABLE
8005 7E LOOP: LD A,(HL)
8006 C5 PUSH BC
8007 E5 PUSH HL
8008 CD 13 80 CALL LED
800B E1 POP HL
800C C1 POP BC
800D 23 INC HL
800E 10 F5 DJNZ LOOP
8010 18 EE JR START
8012 C9 RET
8013 D3 00 LED: OUT ($00),A
8015 0E 0A LD C,10
8017 11 F4 01 LD DE,500
801A F7 RST $30
801B C9 RET
801C 01 02 04 08 10 20 40 80 40 20 10 08 04 02

TABLE: DB 1,2,4,8,16,32,64,128
DB 64,32,16,8,4,2

In this example the data table is a simple list of numbers. Think of this as a
spreadsheet with only one column. By using more than one column much more
complex tables can be created. By carefully encoding values and functions into
combinations of bits and bytes, quite complex problems can be reduced to small
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programs which gain most of their apparent sophistication from the data table. The
assembler and disassembler built into the Small Computer Monitor use this
technique. Trying to write code to directly handle each Z80 instruction would result
in a huge unwieldy program.
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Yet more fun with LEDs
How can we do something as apparently simple as flashing a light or running a light
show whilst also doing something else?

There are various techniques to achieve this.

You could use interrupts if your Small Computer has a hardware timer. Sadly the
standard RC2014 kits do not have these as standard.

A hardware timer would enable the system to be interrupted at regular time
intervals. Whatever software is running when the hardware interrupt occurs is
suspended and your designated interrupt handler routine is run. The interrupt
handler should be a short subroutine which, in this case, changes the LED state(s)
before returning. Upon return the previous activity is resumed. This would normally
happen so quickly the user would not notice any delays.

Without a hardware timer a similar subroutine could be used to sequence the LEDs,
but it would have to be called regular by polling. That is to say it is necessary for the
software running on the target system to call the LED subroutine regularly. This is a
right nuisance and can, at best, only result in the LED subroutine being called at
approximately the required interval.

As the ability to easily run simple background activities, like flashing LEDs, is so
desirable the Small Computer Monitor provides a polling solution. It does this the
best it can without unduly burdening the user and the user’s programs. It is a very
compromised solution but is still rather handy to have. The mechanism adopted
relies on the fact that most of the time a computer is simply waiting for the user to
press a key. Waiting for a key press is quite a predictable process and allows
reasonably accurate time keeping when that is the only thing going on. Accuracy
becomes far less predictable under other conditions.

Running simple background activities, such as flashing LEDs, is an extremely
important mechanism and leads ultimately to modern event driven operating
systems.

Eight bit computers are relatively limited and usually work by your program taking
control of the system (other than hardware interrupts) and usually being structured
in a loop or series of loops, which wait for some input and then do something with it
before repeating the process. In event driven systems the user’s program is more
like a slave to the operating system and only gets a look in when the operating
system requests that the user’s program responds to some event.
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As described above, with a hardware timer interrupt you need to write a subroutine
to sequence the LEDs by one step each time the subroutine is called. The same is
true for the polled timer. In this case however we call the subroutine an event
handler.

As an example we will convert the previous table based LED light show into an event
driven program. This requires the program to remember where in the sequence it
had reached last time it was called.

In the previous implementation the Small Computer was not running any other code
so the processor’s registers contained the current position in the sequence. Now it is
necessary to store these values in variables so that the register values can be
restored the next time the subroutine is called.

The program below was created using www.Asm80.com. It uses the Small Computer
Monitor’s timer events to sequence the light show.

.ORG $8000

; Start the program by setting its initial state
START:

; Turn on the Small Computer Monitor’s Idle events
LD A,1
LD C,$13
RST $30

; Set timer 2 to call the subroutine “POLL” every 50 x 10 milliseconds
LD A,50
LD DE,POLL
LD C,$15
RST $30

; Set up to initialise or repeat the light show sequence
REPEAT: LD A,14

LD (COUNT),A
LD HL,TABLE
LD (POINT),HL
RET

; This subroutine is called regularly by the Small Computer Monitor
; It uses the variables POINT and COUNT to keep track of where
; in the light show it has got to
POLL:

; First restore the pointer to the data table,
; then read the value from the table and output it to the LEDs,
; then increment the pointer to the next table value and store it

LD HL,(POINT)
LD A,(HL)
OUT ($00),A
INC HL

http://www.Asm80.com.
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LD (POINT),HL

; Decrement the table counter
; When it reaches zero, go set up to repeat the sequence

LD A,(COUNT)
DEC A
JR Z,REPEAT
LD (COUNT),A

RET

; Table of LED output values
TABLE: DB 1,2,4,8,16,32,64,128,64,32,16,8,4,2

; These are the variables used to remember where in the table
; we are
COUNT: DS 1
POINT: DS 2

Start the program as usual with the command:
G 8000 {return}

Note that while this is running the Small Computer Monitor is still active so you can
type commands and run programs.

While the above light show is running, try speeding it up by altering the timer
interval to 2 x 10 milliseconds with the monitor’s API command:

API 15 2 8019 {return}
Warning: this will only work if the program is exactly as shown above, as this API
command sets the event handler to address $8019.
API $15 sets event timer to the specified multiple of 10 milliseconds and the event
handler to the specified address. See the Small Computer Monitor user guide for
more details of API functions.
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Assemblers
The Small Computer Monitor has an in-line assembler built in, which is really handy,
but it is not well suited to writing large programs.

There are two basic approaches to developing large machine code programs:
 Install a full blown editor and assembler on your target small computer
 Use an editor and assembler on a PC (or similar)

The first approach is all most people had back in the day. Often this would have
been a suit of development software running under CP/M. This option is still
available today. The software and documentation can be found on line, but you will
need a high end small computer to run it.

The second option is very attractive today as we have easy access to relatively
powerful modern computers. Software to edit source code and to assemble it into
Z80 machine code is available on line. There are also simulators to enable most
software to be tested on a modern computer before installing it on to the target
small computer.

Take a look at “www.Asm80.com” which provides an on line editor and assembler
suitable for use with the Small Computer Monitor. A tutorial to help you get started
writing programs with Asm80.com for use with the Small Computer Monitor can be
found at www.scc.me.uk.

Once you have written and assembled your program on a modern computer you can
download it to your target small computer to run and test on real hardware.
Assemblers can usually produce an Intel Hex file containing the machine code
program. This file can be downloaded to the target small computer using the same
terminal program you have already been using. Just look for an option like “Send
Text File”.

The Small Computer monitor recognises an Intel Hex file as it arrives and decodes it,
writing the machine code to memory as it does so. Once completely downloaded
you can run the program with the Go command. You then have all the features of
the Small Computer Monitor to help test and debug the program.

These assemblers are not specific to the Small Computer Monitor, so are not
documented in detail here.

http://www.Asm80.com
http://www.scc.me.uk.
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Fault Finding
If you do not see the monitor’s sign on message on the terminal when you switch
the system on, then here are some things to try:

Press the RC2014 reset button.

If your RC2014 was not previously tested with the supplied BASIC ROM, then if
possible check it does work with the BASIC ROM. If that is not possible then you’ll
need to go through all the usual fault finding processes: check the power supply,
check all links, check no chips have bent legs and thus not making contact with their
socket, carefully inspect all soldering, check all the chips are inserted the right way
round, check all the components are in the right place. Check your serial connection
looks right and that the terminal is correctly set. Then cry!

If your RC2014 was known to be working with the supplied BASIC ROM, then verify
the Small Computer Monitor ROM contains the correct code and check the links
related to addressing the ROM (especially if the chip has a different capacity to the
one containing BASIC). Other than that you would appear to have an odd problem as
the Monitor ROM should, in theory, work if the RC2014 standard BASIC ROM works.

It should be noted that there are a number of different serial modules available for
the RC2014 and they are not all compatible. Currently the Small Computer Monitor
only works with official RC2014 serial modules or modules totally compatible with
these, and also SIO/2 modules following Grant Searle’s register addressing.
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Parts and Suppliers
The following is a list of parts and suppliers used during development of the Small
Computer Monitor.

RC2014 official modules
Information at www.rc2014.co.uk
Parts purchased through Tindie:
https://www.tindie.com/stores/Semachthemonkey/?ref=offsite_badges&utm_sour
ce=sellers_Semachthemonkey&utm_medium=badges&utm_campaign=badge_medi
um

Chip programmer
WINGONEER TL866CS Universal USB MiniPro EEPROM FLASH BIOS Programmer AVR
GAL PIC SPI
Amazon ASIN: B071H5XGR7
https://www.amazon.co.uk/gp/product/B071H5XGR7/ref=oh_aui_detailpage_o00_s
00?ie=UTF8&psc=1

FTDI cable
TTL-232R-5V - USB to Serial Converter Cable, 5V, 6Way, 1.8m
Farnell order code: 2419945
http://uk.farnell.com/ftdi/ttl-232r-5v/usb-to-serial-converter-cable/dp/2419945?ost
=2419945&iscrfnonsku=false&ddkey=http%3Aen-GB%2FElement14_United_Kingdo
m%2Fsearch

FTDI 'cable'
HALJIA FT232RL FTDI USB to TTL Serial Converter Adapter Module Mini USB 3.3V
5.5V Board for Arduino
Amazon ASIN: B06XDH2VK9
https://www.amazon.co.uk/gp/product/B06XDH2VK9/ref=oh_aui_detailpage_o00_
s00?ie=UTF8&psc=1

USB-RS232 cable
UGREEN 20210 USB Serial Cable, USB to RS232 DB9 9 pin Converter Cable
Amazon ASIN: B00QUZY4UG
https://www.amazon.co.uk/gp/product/B00QUZY4UG/ref=oh_aui_search_detailpag
e?ie=UTF8&psc=1
Note, you still need a null modem lead between this and the RC2014.

http://www.rc2014.co.uk
https://www.tindie.com/stores/Semachthemonkey/?ref=offsite_badges&utm_sour
https://www.amazon.co.uk/gp/product/B071H5XGR7/ref=oh_aui_detailpage_o00_s
http://uk.farnell.com/ftdi/ttl-232r-5v/usb-to-serial-converter-cable/dp/2419945?ost
https://www.amazon.co.uk/gp/product/B06XDH2VK9/ref=oh_aui_detailpage_o00_
https://www.amazon.co.uk/gp/product/B00QUZY4UG/ref=oh_aui_search_detailpag
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EEPROM 8k x 8 bit
Microchip Technology AT28C64B-15PU Parallel EEPROM Memory, 64kbit, 150ns, 4.5
→ 5.5 V PDIP 28-Pin
RS part number: 127-6572
http://uk.rs-online.com/web/p/eeprom-memory-chips/1276572/

http://uk.rs-online.com/web/p/eeprom-memory-chips/1276572/
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Contact Information
If you wish to contact me regarding the Small Computer Monitor please use the
contact page at www.scc.me.uk.

Issues related to the RC2014 can be posted on the RC2014-Z80 google group.

Stephen C Cousins, Chelmsford, Essex, United Kingdom.

http://www.scc.me.uk.

